Enhanced Dendritic Compartmentalization in Human Cortical Neurons
نویسندگان
چکیده
منابع مشابه
Electrical compartmentalization in dendritic spines.
Most excitatory inputs in the CNS contact dendritic spines, avoiding dendritic shafts, so spines must play a key role for neurons. Recent data suggest that, in addition to enhancing connectivity and isolating synaptic biochemistry, spines can behave as electrical compartments independent from their parent dendrites. It is becoming clear that, although spines experience voltages similar to those...
متن کاملSpace matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons.
Dendrites of pyramidal neurons are complex, electrically active structures that can produce local and global Ca(2+) compartments. Recent studies indicate that dendrites of cortical GABAergic interneurons are also highly specialized, and that different subtypes vary in their morphology, in their intrinsic and synaptic conductances and in the Ca(2+) signals they generate. Because interneurons pla...
متن کاملThree-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons
We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult...
متن کاملPreparing e18 cortical rat neurons for compartmentalization in a microfluidic device.
In this video, we demonstrate the preparation of E18 cortical rat neurons. E18 cortical rat neurons are obtained from E18 fetal rat cortex previously dissected and prepared. The E18 cortex is, upon dissection, immediately dissociated into individual neurons. It is possible to store E18 cortex in Hibernate E buffer containing B27 at 4 degrees C for up to a week before the dissociation is perform...
متن کاملDendritic size of pyramidal neurons differs among mouse cortical regions.
Neocortical circuits share anatomical and physiological similarities among different species and cortical areas. Because of this, a 'canonical' cortical microcircuit could form the functional unit of the neocortex and perform the same basic computation on different types of inputs. However, variations in pyramidal cell structure between different primate cortical areas exist, indicating that di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2018
ISSN: 0092-8674
DOI: 10.1016/j.cell.2018.08.045